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Stable vortex dipoles in nonrotating Bose-Einstein condensates
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We find stable families of vortex dipoles in nonrotating Bose-Einstein condensates. The vortex dipoles
correspond to topological excited collective states of the condensed atoms. They exist and are dynamically and
structurally stable for a broad range of parameters. We show that they can be generated by phase-imprinting
techniques on the ground state of condensates.

DOI: 10.1103/PhysRevA.68.063609 PACS number~s!: 03.75.Lm, 42.65.Tg
ie
a
-

th
u-
ity
th
hi
s
co
s

ha
ti-
a
e

n-
ru
e
d
tin

d

ly

te
lik
ne

n
d
s

h
o

ta
in

of
led

rm

th
on-
e
re-

ally

di-

by

nal
t-

rated
Vortices are ubiquitous entities that have fascinated sc
tists for centuries. They have been observed in almost
branches of physics@1,2#, appearing, e.g., as flows in hydro
dynamics@1#, persistent currents in superfluids@3#, nested
phase singularities in optical fields@4–8#, or vortex lines in
Bose-Einstein condensates~BECs! @9–20#. In superfluids,
for example, the nucleation of vortex lines assures
dissipation-free rotational motion of the fluid and an intrig
ing result is the quantization of the circulation of the veloc
around these vortex lines. The recent growing interest in
study of BECs, due to the experimental accessibility to t
state of condensed matter, has opened new opportunitie
lated to the existence of vortex ensembles hosted in the
densates. Vortices were nested in condensates either by
ring the condensate with a laser@9–16# or by using
topological phases in condensates trapped in Joffe-Pritc
magnetic traps@17#. When stirring the condensate the vor
ces or, to be more precise, the vortex lines that are gener
have all the same topological charge. However, recent th
retical works@21–23# have shown that noninteracting co
densates could host more complex stationary vortex st
tures, consisting of vortices of different topological charg
such as stable vortex quadrupoles. Stationary vortex qua
poles were found to exist as excited states in nonrota
symmetric traps in the interacting case indeed@23# and it is
believed that a rich variety of vortex-cluster structures
exist in nonrotating BECs.

Recent experiments@15# have revealed that self-assemb
of vortices into complex structures~e.g., regular vortex lat-
tices! is a robust feature of BECs. These complex vor
structures are excited collective states of BECs and un
what happens in optics, where higher order self-sustai
structures suffer a variety of instabilities~dynamical, struc-
tural, and modulational!, they are much more stable tha
commonly believed. Suitable excited states can be viewe
atomic soliton clusters, in the spirit of the soliton molecule
made of spatiotemporal optical solitons@24–28# which tend
to be unstable or, at best, metastable. In this paper we s
that stable, topological two-vortex excited collective states
condensed atoms do exist in nonrotating BECs. These s
host two vortices of opposite topological charges thus be
termedvortex dipoles~VDs!.
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The model.In the zero-temperature limit the dynamics
the condensed atoms in a magnetically confined BEC is ru
by the Gross-Pitaevskii equation, which, in normalized fo
reads

i
]C

]t
52

1

2
DC1

1

2 (
h5x,y,z

vh
2h2C1UuCu2C, ~1!

whereC is the wave function,vh are the normalized trap
frequencies, andU is an adimensional interaction streng
proportional to the scattering length of the atoms in the c
densate. The time variablet is normalized with respect to th
trap characteristic period and the spatial variables with
spect to the trap characteristic length, respectively. Fin
N5* uCu2d3rW is the number of atoms in the condensate.

Construction of a vortex dipole state.To motivate the sub-
sequent analysis we first construct numerically vortex
poles on the basis of the full three-dimensional Eq.~1!. First,
we compute theground state~GS! of a BEC in a pancake-
type trap with parametersvx5vy51 andvz52 @Fig. 1~a!#,
then we imprint the appropriate phase on it, given
arg@x2221y1 i (x2222y)# ~this choice will be justified
later! and let the condensate evolve in the three-dimensio
space up tot540 to study its dynamical stability. The ou
come is shown in Figs. 1~b! and 1~c!.

FIG. 1. ~a! Ground-state stationary solution of Eq.~1! for vx

5vy51, vz52, and UN.4160. ~b! Solution shortly after the
phase imprinting procedure att50.2, and~c! solution aftert540.
Shown are the isosurfaces of the condensate and the integ
views along thez axis.
©2003 The American Physical Society09-1
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These results seem to imply that VDs can exist as sta
structures in BECs. In what follows we confirm the existen
and stability of such topological structures.

Stationary vortex dipole solutions.To simplify the analy-
sis here we concentrate on pancake traps, were thez direc-
tion is tightly confined so that thez coordinate can be decou
pled and the system becomes two dimensional. T
C(x,y,z;t)5c(x,y,t)e2vzz

2/2eivzt/2 with

i
]c

]t
52

1

2 S ]2c

]x2
1

]2c

]y2 D 1
1

2 (
h5x,y

vh
2h2c1gucu2c,

~2!

where g is a reduced nonlinear coefficient because of
normalization factors~see, e.g., Refs.@29,30#!. From now on
we take N5* ucu2d2rW. The possibility of finding stable
nontrivial structures such as vortex quadrupoles in symm
ric traps (vx5vy) has been investigated for strong
interacting condensates in Ref.@23#. However, asymmetric
traps, i.e., those withvxÞvy , offer more degrees o
freedom than the symmetric ones, and stationary vo
structures can be found in such potentials. For example,
can build in the particular case when the ratiovy /vx52, in
the noninteracting case (g50), a stationary VD as a linea
combination of Hermite polynomials in variablesx and y.
For vx51 this stationary solution hosting a VD
is cdip(t,x,y)5@(4x22222A2y)1 i (4x22212A2y)#
3exp(2x2/22y2)exp(27it/2). Starting from this solution
we are going to look for stationary VDs in interacting co
densates. Any one-parameter family of stationary solution
Eq. ~1! is of the typec(t,x,y)5wm(x,y)exp(2imt), where
wm(x,y) is the envelope of the stationary solution corr
sponding to the chemical potentialm.

We have numerically calculated several types of nonlin
stationary states with the symmetrywm(2x,y)5wm(x,y) by
using a Newton relaxation technique: GSs, VDs@see insets in
Figs. 2~a! and 2~b!#, andsoliton dipoles~SDs! @see insets in
Figs. 2~c! and 2~d!#, and VDs@see insets in Figs. 2~c! and
2~d!#. The GS solution, displaying a constant phase, is
one of lowest energy, and is known to be dynamically sta
Soliton dipoles, which are the multidimensional extension
black solitons, are two-humped solutions and display a s
like phase. They are known to be dynamically unstable in
nonlinear Schro¨dinger equation and their equivalents
three-dimensional geometries were found to disintegrate
vortex rings@13,14#. On the contrary the phase front of th
VD solutions is nontrivial and, in the weakly interactin
limit their phase gradient displays a decay as¹F'1/r2, F
being the phase of the complex field andr the radial coor-
dinate. This resembles the features of electric charge dipo

We have first calculated the density profiles of the stati
ary VDs in an asymmetric trap withvx51 andvx52 using
as initial trial functioncdip(t50,x,y). Then we proceed by a
continuation method varying slightly both the interacti
strengthg and the chemical potentialm until the regime of
strong interactionsgN5100 @30# is reached. Finally, we pro
ceed by varyingvx from vx51 to vx52 while keepingvy
constant. For all these parameter values we obtain VD s
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tions proving that they exist for a continuous range of tr
frequencies, including the case of symmetric traps. Furt
for the symmetric trap, we have decreased the strength o
interaction and we have observed that no VDs exist belo
threshold (gN) th'20. While approaching this threshold, th
vortices separate from each other, and at cutoff the VDs
generate into the unstable SDs. Figure 2 shows the diagr
E(N) andm(N) for the two extreme situations correspon
ing to the symmetric trap withvx5vy52 and the asymmet
ric trap withvx51 andvy52 for the three types of station
ary states mentioned above and additionally for thevortex
solitons~VSs!. One can see, for the case of symmetric tra
ping potentials, that the branch corresponding to VDs bif
cates from the branch corresponding to unstable SDs. Th
in agreement with the absence of stationary VDs in non
teracting symmetric condensates, and is a point that mus
emphasized on physical grounds: The vortex dipoles
purely nonlinear entitiesself-sustained by the interaction
between the condensed atoms, thus with no counterpar
noninteracting systems. It is remarkable that BECs are
ideal laboratory for finding these nonlinear structures sin
other systems ruled by nonlinear Schro¨dinger equations simi-
lar to Eq.~1!, such as optical systems, have typically smal
interaction strengths.

It is remarkable that the vortex dipole is energetica
more favorable than the soliton dipole so that it plays the r
of the ‘‘second excited state’’ of this quantum system, th
being a purely nonlinear effect coming from the last term
Eq. ~2!. It is possible to justify this behavior of the nonlinea
system by analyzing the energy functional

FIG. 2. Chemical potential and energy vs number of atoms
~a!, ~c! a symmetric trap withvx5vy52 and~b!, ~d! an asymmet-
ric trap with vx51 and vy52. Here g510. Dashed lines: the
soliton dipole branch. Filled squares: the variational approach
sults for the vortex dipole. The insets show typical density distrib
tions for the vortex dipoles in symmetric traps@panel~a!# and asym-
metric traps@panel ~b!# and soliton dipoles in symmetric trap
@panel~c!# and asymmetric traps@panel~d!#.
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E@c#5E d2rW
1

2 F u¹cu21 (
h5x,y

vh
2h2ucu21gucu4G . ~3!

Let us look for its extremum under the restriction*d2rWucu2

5N over the family of trial functions defined asc5a1f1
1a2f2, where f15(x221/2vx)exp(2vxx

2/22vyy
2/2)

and f25y exp(2vxx
2/22vyy

2/2). For instance, fora150
we have a soliton dipole and fora151 anda25 i we have a
vortex dipole, i.e., the complex functionc hosts two vortices
of opposite charges located at the crossing of the linesx5
6A1/2vx @Re (c)5f150# and y50 @ Im (c)5f250#.
After minimizing the energy with respect toa1,2 taking into
account the restriction we obtain that~i! a1 /a2 should be
imaginary,~ii ! the energy of ‘‘mixed’’ states witha1Þ0 and
a2Þ0 is smaller than the energy of any ‘‘pure’’ one,E@c#
,E@f1,2#, if the quantity d5@d12N(C112C12)#@d
12N(C122C22)# is negative. HereCjk5^f j

2fk
2&/n jnk , n j

5^f j
2&, ^•••&5*d2rW••• and d52vx2vy . This being the

case the optimal ratio between the moduli ofa1,2 is given by
ua1u2:ua2u25n2(C222C12):n1(C112C12). Calculating all
integrals in the casevx5vy/251, one gets d50,
C11:C12:C22541:12:48 which shows that indeedd,0, i.e.,
formation of mixed state~vortex dipole! is profitable. The
resulting value of energy can be written asE5(ggN2

17N/2) with g557A2/520p. Note that theN dependence
of E in Fig. 2 is in agreement with this theoretical predictio

Stability of vortex dipoles.The study of the dynamics an
stability of the vortex dipoles in the presence of perturbatio
is of paramount importance both from the theoretical a
experimental points of view. The fact that these states
excited states does not automatically imply their instabil
Theoretical studies have revealed the existence of ro
metastable solitons both without or with vorticity~see, e.g.,
Refs. @31–35#!. In the naive analogy between vortices a
electrical charges, one might expect that a vortex dipole
not stable, the constituent vortices always annihilating the
selves. However, such analogy is only justified in static c
ditions, and does not hold in dynamical regimes. In parti
lar, it was recently shown that even in the noninteract
case, for a symmetric trap, vortex-antivortex pairs can
hibit rich dynamical features@36#. Namely, depending on th
initial distance between the constituent vortices a variety
scenarios were theoretically shown to occur:~i! the vortices
move along nonintersecting trajectories,~ii ! they periodically
annihilate themselves and revive after a while flipping
vorticity, and, for a critical separation between vortices, a
~iii ! they periodically flip the topological charge@36#. All
such features can be understood in terms of the so-ca
Berry vortex trajectories@37# in the framework put forward
by Freund@38#. The nonlinear interaction brings even mo
complexity into play. In some sense, in the strongly nonl
ear regime the vortices become like a small structure and
nonlinearity generates a kind of barrier, both physical a
energetic, that might prevent the recombination of the to
logical objects.

We investigated the stability of the VDs against two d
ferent kinds of perturbations. First, the dynamical instab
ties, i.e., instabilities of the solutions under small pertur
06360
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tions to the initial data. Second, the structural instabilit
which may develop as a consequence of perturbations
formed on the model, e.g., when changing the trap frequ
cies @30# or the strength of the interaction.

To elucidate the dynamical stability of the VDs, we ha
conducted numerical experiments by solving Eq.~2! taking
as initial data a VD with different types of random perturb
tions imposed. In all the situations analyzed we have
served that the VDs are extremely robust with respect
initial noisy perturbations up to the maximum times used~of
the order oft51000). This is remarkable since a naive i
tuition might suggest that a vortex-antivortex pair shou
have a strong tendency to recombine into a simpler ze
topological charge configuration. However, not only is th
not the case but vortex dipoles also behave like strong att
tors of the system. Our simulations reveal that once an in
distribution with a phase distribution close to that of the V
but with a completely different density profile, is launche
into the trap, it will evolve towards the VD state. Similar
what we have done in the three-dimensional situation sho
in Fig. 1, we have imprinted on the ground states of
condensate phase masks corresponding to two vortices
opposite vorticities. In a symmetric trap, if the ground sta
correspond to a chemical potential for which no VD so
tions exist, i.e., in the weakly interacting limit, no stable V
is generated@see, e.g., Figs. 3~a!–3~c!#. The dynamics re-
sembles that of a VD in a symmetric trap in the nonintera
ing case, when then vortices flip the charges@36#. If the trap
is asymmetric, even in the weakly interacting regime, o
can generate VDs by imprinting on the ground state of
condensate an adequate phase mask. In this case,
though pulsating dynamics of the cloud is visible, no cha
flipping occurs@see Figs. 3~d!–3~f!# and the VD survives. In
the strongly interacting regime, in both symmetric and asy
metric traps, the VD generated does not display any cha
flipping showing robustness on propagation.

To study the structural stability of VDs we have pe
formed, as indicated above, a sharp change of the trap

FIG. 3. ~a!–~c! Charge flipping in weakly interacting conden
sates (gN'16.5) for vx5vy52. ~d!–~f! Generation of a vortex
dipole by phase imprinting~see text! in a trap with vx51, vy

52, and gN'20.5. Shown are density plots and interferen
fringes ~see Ref.@30#! for (x,y)P@23,3#3@23,3#.
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quencies by increasingvx with Dvx and decreasingvy with
Dvy and followed the evolution. We have observed that
VD survives such strong perturbations, providedDvx,y are
moderate, i.e.,Dvx /vx&5%. In this case, the atom clou
hosting the VD pulsates transversally but the vortices p
form only small oscillations around their equilibrium pos
tions, as shown in Figs. 4~a!–4~c! without topological charge
flipping. As expected with large changes of the trap frequ
cies, e.g.,Dvx /vx.10%, the VD cannot survive, and, vi
extremely sharp Berry trajectories@37#, the vortices ex-
change the charges@see Figs. 4~d!–4~f!#.

FIG. 4. Effect of structural perturbation on the vortex dipo
~a!–~c! Robust propagation of the symmetric vortex dipole cor
sponding tovx,y52 and gN'190 in a trap withvx

254.4, vy
2

53.6. ~d!–~f! Charge flipping induced by a strong structural pert
bation. The initial state is the same as in panel~a! and the trap
frequencies arevx

255 andvy
253.
m

s,

.E

el
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In conclusion, we have found one-parameter families
vortex dipoles in tightly confined nonrotating symmetric a
asymmetric BECs. Such dipoles correspond to purely n
linear collective excited states which exist in a wide range
the parameters, do not have counterparts in the noninte
ing limit in symmetric traps, and are extremely robust und
initial perturbations and even survive moderate structu
perturbations. Our numerical experiments reveal that the
tex dipoles could be generated by imprinting an adequ
phase mask on a condensate residing in the ground state
in two-dimensional system and in the more realistic thr
dimensional system@39–42#. In particular, the possibility of
phase imprinting of vortex-antivortex pairs in toroid
trapped condensate has been already shown numeri
@43#. The topological phase technique proposed in Ref.@17#
might be more suitable for generation of the vortex dipo
than the phase-imprinting technique that might face seri
difficulties. However, it is noteworthy to mention the rap
advance in the phase-imprinting technique, mainly motiva
by the generation of the holographic optical traps. Anoth
difficult task from the experimental point of view is th
choice of an adequate detection technique in order to av
the destruction of the vortex-dipole state that can occur if
atomic cloud is let to freely expand. A solution to this pro
lem would be the use of an interferometric method that w
successfully used to detect a single vortex nested in a B
@44#.
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