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Abstract
We introduce a class of robust soliton clusters composed of N fundamental
solitons in three-dimensional media combining the self-focusing cubic and
self-defocusing quintic nonlinearities. The angular momentum is lent to the
initial cluster through staircase or continuous ramp-like phase distribution.
Formation of these clusters is predicted analytically, by calculating an
effective interaction Hamiltonian Hint. If a minimum of Hint is found, direct
three-dimensional simulations demonstrate that, when the initial pattern is
close to the predicted equilibrium size, a very robust rotating cluster does
indeed exist, featuring persistent oscillations around the equilibrium
configuration (clusters composed of N = 4, 5, and 6 fundamental solitons
are investigated in detail). If a strong random noise is added to the initial
configuration, the cluster eventually develops instability, either splitting into
several fundamental solitons or fusing into a nearly axisymmetric vortex
torus. These outcomes match the stability or instability of the
three-dimensional vortex solitons with the same energy and spin; in
particular, the number of the fragments in the case of the break-up is
different from the number of solitons in the original cluster, being instead
determined by the dominant mode of the azimuthal instability of the
corresponding vortex soliton. The initial form of the phase distribution is
important too: under the action of the noise, the cluster with the built-in
staircase-like phase profile features azimuthal instability, while the one with
the continuous distribution fuses into a vortex torus.

Keywords: spatiotemporal solitons, light bullets, soliton clusters, spinning
light bullets

1. Introduction

Modern nonlinear optics classifies solitons, i.e., self-
supporting localized light pulses and beams, as spatial,
temporal, or spatiotemporal, depending on whether the self-

confinement of the light propagation is observed in space,
time, or in both space and time. In the course of the
last three decades, they have been predicted and observed
in various settings [1–3], including one-dimensional (1D)
temporal solitons in optical fibres, 1D and two-dimensional
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(2D) spatial solitons (self-localized light beams) in planar and
bulk waveguides, as well as 2D and three-dimensional (3D)
spatiotemporal solitons (alias light bullets [4]) in planar and
bulk dispersive optical media. As regards the latter type,
the only kinds of spatiotemporal solitons that have thus far
been created in a real experiment are quasi-2D ones in bulk
quadratically nonlinear media [5] (for detailed analysis of
the existence and stability of light bullets in quadratically
nonlinear media, see [6]). Several other kinds of optical
solitons were discovered, chiefly during the last decade, such
as Bragg solitons, vortex solitons, vectorial solitons, discrete
solitons, cavity solitons, and photorefractive and holographic
solitons [1].

A great deal of recent studies were focused on nonlinear
self-trapped optical beams carrying phase dislocations, which
are associated with zero-intensity points (for recent reviews
of linear and nonlinear singular optics, which studies
optical fields carrying topological defects, see, e.g., [7]).
Typical examples of nonlinear ‘singular beams’ are vortex
solitons [8], multiple vector solitons [9], multi-soliton necklace
patterns [10, 11], and soliton clusters [12]. Complex
structures in self-focusing nonlinear media, composed of
several interacting solitons in the form of ring-like necklaces,
have been recently investigated as nontrivial examples of self-
trapped states of light carrying phase dislocations [10, 11].
Two-dimensional soliton clusters in saturable self-focusing
media, which were recently introduced in [12], are ring-like
soliton complexes in bulk media with a staircase-like phase
distribution that induces a nonzero angular momentum leading
to rotation of the cluster. They are generally metastable (in the
absence of random perturbations they can propagate over many
diffraction lengths), eventually featuring a symmetry-breaking
instability. However, random perturbations destabilize the
cluster after passing only a few diffraction lengths, and it
eventually disintegrates into a set of isolated 2D solitons.

Soliton clusters in two and three dimensions, respectively,
may be viewed as a generalization of the 2D bright vortex
solitons (vortex rings) [13–18] and spinning light bullets
(vortex tori) [19–23]. The concept of soliton clusters has also
been introduced in the study of nonlinear pattern formation in
dissipative media, such as externally driven optical cavities,
the simplest example being a 2D clustered pattern observed in
the transverse plane [24].

These objects are related to ones with more sophisticated
topological properties, such as skyrmions (named by analogy
with localized structures in the Skyrme model of nuclear
forces). The skyrmions are complex localized structures
characterized by two topological invariants, which are believed
to play an important role in various physical settings, from
quantum Hall systems, nematic liquid crystals, and magnetic
semiconductors, to Bose–Einstein condensates (BECs). Here
we only mention the prediction of skyrmions [25] in a
two-component BEC [26] and the proof that they can be
energetically stable in a trapped two-component atomic BEC,
under realistic experimental conditions [27].

In the rapidly developing field of matter waves,
considerable progress has been reported in the generation of
vortices [28] in two-component [29] and stirred [30] BECs,
the observation of a regular triangular vortex lattice in rotating
BECs [31, 32], formation of bright-soliton trains in a quasi-
1D optical trap [33], the prediction of bright solitons that can

be stabilized in the free 2D space by making the nonlinearity
strength oscillate (by means of the Feshbach resonance)
between positive and negative values [34, 35], the existence of
stable 2D and 3D solitons (including those carrying topological
charge) in self-attractive BECs trapped in optical lattices [36],
and the prediction of dynamically and structurally stable
families of vortex dipoles in nonrotating BECs (corresponding
to some topological excited collective states of the condensed
atoms) [37]. Still earlier works on vortices and solitons in
BECs were reviewed in [38]. Closely related topics are the
recently introduced concepts of globally linked vortex clusters
in nonrotating BECs with attractive interactions [39], of ring
dark solitons and vortex necklaces in BECs [40], and of the so-
called soliton molecules in optics [41–43] and mixed atomic–
molecular BECs [44–51].

In media with a simple quadratic or cubic nonlinearity,
soliton clusters always tend to self-destroy through expansion
or collapse, or, at best, they exist as metastable states which are
broken up by small perturbations [10–12, 52–55]. However,
in the presence of two competing optical nonlinearities (self-
focusing and self-defocusing ones), the instability may be
greatly suppressed, and the soliton complexes may propagate
stably over an extremely large distance even in the presence
of random perturbations. The first example of the formation
of both 2D [56] and 3D [41] robust soliton clusters was
demonstrated in the case of competing quadratic and self-
defocusing cubic nonlinearities; these soliton complexes carry
nonzero orbital momentum and are linked via a staircase-
like phase distribution. A fact which helps to understand
the stabilization of these clusters is the existence of stable 2D
vortex solitons [57] and 3D vortex tori [21] in the same media;
the clusters may be regarded as, roughly speaking, fragmented
counterparts of these stable objects.

Recently, it was found that similar stable 2D and 3D bright
spinning solitons also exist in media with competing self-
focusing cubic and self-defocusing quintic nonlinearities [58–
63, 20], which suggests the possibility of investigating quasi-
stable soliton clusters in the multidimensional nonlinear
Schrödinger (NLS) models with competing self-focusing
cubic and self-defocusing quintic nonlinearities. In a recent
work [64], we have shown that such complex robust 2D
solitonic structures are indeed generic objects in this medium.

A challenge is to construct quasi-stable soliton clusters,
composed of a predefined number of initially separated
fundamental nonspinning solitons, in the three-dimensional
cubic–quintic (CQ) model. They may be regarded as
‘molecules of lights’, if separate fundamental solitons are
given the role of ‘light atoms’. As regards the possibility
of experimental observation of the 3D soliton clusters, it
was recently concluded that the dielectric response of several
different media may be modelled reasonably well by the CQ
nonlinearity (however, complicated by significant two-photon
absorption) [65].

Search for quasi-stable soliton clusters in the 3D CQ
model is the objective of this work. Necklace-like 3D clusters,
composed of several individual solitons, are constructed in
section 2. Direct numerical simulations of their propagation,
which proves that they are indeed robust complexes, are
presented in section 3. The results are summarized in the
concluding section.
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2. Construction of three-dimensional soliton clusters
in media with cubic–quintic nonlinearity

The equation governing the field evolution is the NLS equation
of the CQ type, written in a normalized form:

iu Z + u X X + uY Y + uT T + |u|2u − α|u|4u = 0, (1)

where α is a parameter which characterizes the strength of the
quintic nonlinearity that can be scaled out (see below). For
earlier works treating the model in the context of nonlinear
optics, see, for example, [66]. In the most typical case,
equation (1) governs the spatiotemporal evolution of the
complex amplitude of the electromagnetic wave along the axis
Z in a bulk dispersive medium (X and Y are the corresponding
transverse coordinates); soliton solutions to be found in this
case then represent 3D spatiotemporal solitons, i.e., self-
trapped light pulses in the bulk optical medium.

We now briefly revisit the recently investigated problem of
constructing spinning-soliton solutions to equation (1) [22, 23],
which are looked for in the form

u = U (r, T ) exp(iSθ) exp(iκ Z), (2)

where r and θ are the polar coordinates in the (X, Y ) plane,
κ is the wavenumber shift (the propagation constant), which
parametrizes the family of stationary solutions, and the integer
S is the above-mentioned spin. The amplitude U may be
assumed real, and it obeys the equation

Urr + r−1Ur − S2r−2U + UT T − κU + U 3 − αU 5 = 0. (3)

The existence region for the 3D solitons that are sought for
in the form of equation (2) is 0 < κ < κ

(3D)

offset = 0.1875,
regardless of the value of the spin and dimension [22, 23].

Equation (1) conserves a dynamical invariant, which has
the meaning of the energy of the light pulse:

E =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|u(X, Y, T )|2 dX dY dT . (4)

Other dynamical invariants are the Hamiltonian,

H =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
[|u X |2 + |uY |2 + |uT |2 − (1/2)|u|4

+ (1/3)α|u|6] dX dY dT , (5)

the momentum (equal to zero for the solutions considered in
this work), and the z-component of the angular momentum,

Lz =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(∂φ/∂θ) |u|2 dX dY dT , (6)

φ being the phase of the complex field u. Using equation (3),
one can readily deduce the relations Lz = SE and

H = κE − (4π/3)α

∫ ∞

0

∫ ∞

−∞
U 6(r, T )r dr dT , (7)

which are valid for the stationary spinning solitons.
Notice that equation (1) is invariant against rescaling,

α → α̃ ≡ λα, Z̃ = λZ , X̃ = λ1/2 X , Ỹ = λ1/2Y , T̃ = λ1/2T ,
Ũ = λ−1/2U , where λ is an arbitrary positive scaling factor.
This leads to the corresponding scaling of κ , E , and H :

κ̃ = κ/λ; Ẽ = λ1/2 E; H̃ = H/λ1/2. (8)

For the numerical simulations, we set α = 0.2.
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Figure 1. The propagation constant κ (a) and Hamiltonian H (b) of
the fundamental and spinning three-dimensional solitons in the
cubic–quintic model versus the energy E . Here and below, the
scaling factor α in front of the cubic term in equation (1) is fixed to
0.2.

One-parameter families of 3D spinning solutions can be
obtained in a numerical form, using a standard band-matrix
algorithm to deal with the resulting two-point boundary value
problem. The solitons, as expected, have the form of a vortex
torus with a hole in the centre (since the field must vanish as r |S|
for r → 0). In accordance with the results predicted by means
of the semi-analytical variational approximation developed
in [22], the solutions exist provided that their energy exceeds a
certain threshold value. To quantify the 3D solitons, in figure 1
we show the wavenumber κ and the Hamiltonian H for the
solitons with spin S = 0, 1, and 2 as functions of their energy
E . In this figure, continuous and dashed curves correspond to
stable and unstable branches (see [20] for further details). Note
that κ monotonically increases with E , showing saturation (to
the above-mentioned limiting value κoffset) at large values of E .
We also see that the threshold energy for the soliton existence
drastically increases with S.

In what follows we construct soliton clusters composed
of several fundamental (nonspinning) 3D solitons. A simple
structure of such a kind is one forming a circular necklace,
which is a set of N fundamental solitons set along a
circumference of some radius R0, with a fixed phase difference
between adjacent solitons, so that the overall phase change
along the circumference is 2π M , where the integer M is the
net topological charge of the necklace [12].

Thus, the initial ansatz is

u(Z = 0) =
N∑

n=1

U0(|r − rn|, T )eiφn , (9)

where U0 is the stationary fundamental soliton, rn are positions
of the soliton centres chosen as specified above, and the soliton
phases at these points are φn = 2nπ M/N . The parameters
that control the dynamics of the soliton complexes are the
topological charge M , the number of solitons N in the set, its
initial radius R0, and the energy E of each constituent soliton.

Note that the ansatz (9) implies that the phase distribution
in the initial cluster has a staircase-like form. Below, we
will also consider another possibility, with a continuous initial
phase distribution that has a form of a ramp with a constant
slope,

u(Z = 0) =
N∑

n=1

U0(|r − rn|, T )eiMθ , (10)
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Figure 2. The effective interaction potential versus the radius for the clusters described by the ansatz (9) composed of N fundamental
solitons, at different values of the vorticity carried by the soliton complex.

where M is, as above, the net vorticity, and θ is the angular
coordinate in the (X, Y ) plane.

Recall that the 3D vortex solitons with spin S = 1 are
stable in the present model if their energy exceeds a threshold
value (that is, if they are sufficiently broad) [20]. We therefore
focus on consideration of the necklaces whose initial net energy
exceeds the corresponding stability threshold value of the
S = 1 vortex soliton (which is Ethr ≈ 1840 with the scaling
factor α = 0.2; see figure 1), anticipating that, for smaller
values of the energy, the necklace has no chance to be stable.
Thus, we have considered, in particular, the clusters with the
net topological charge M = 1, composed of N = 4, 5, and 6
fundamental solitons, each having the energy of E = 638, so
that their net energy is well above the threshold.

For the ansatz (9), the cluster’s interaction Hamiltonian
(alias the effective potential of the interaction), defined as
Hint = H(R0)/|H(R0 = ∞)|, was computed as a function
of R0 and M . This quantity gives important clues concerning
the existence and stability of bound states of solitons (see [67]
and [12]). The result is that, for the ansatz (9) with N = 4,
5, and 6, the interaction Hamiltonian for M = 1 displays
global minima (as well as for some other values of M due to
the symmetry of the physical system under consideration), see
figure 2, which strongly suggests the existence of quasi-stable
3D necklace-like patterns.

3. Robustness of soliton clusters in the cubic–quintic
medium

By using the predictions following from the computation of
the effective potential, we directly simulated equations (1)
by means of a finite-difference scheme based on the classical
Crank–Nicholson discretization algorithm. This scheme was
supplemented by the Newton–Picard iterations and the Gauss–
Seidel method for solving the resulting linear system of
equations. To achieve good convergence, we needed, typically,
five Picard iterations and eight Gauss–Seidel iterations. In
most cases, we employed the transverse-grid step size �X =
�Y = �T = 0.3, and the longitudinal step size �Z = 0.003.
Transparent boundary conditions allowing the radiation to
escape from the computation window were implemented, to
prevent possible artificial effects caused by radiation waves
re-entering the integration domain.

To present the results in a compact form, we define the
cluster’s mean radius

R(Z) ≡ 1

E

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(X2+Y 2)1/2|u|2 dX dY dT , (11)
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Figure 3. The evolution of the mean radius (top row) and mean
angular velocity (bottom row) for clusters composed of four and five
solitons. Dashed curves correspond to the case when a random noise
is superimposed at input, whereas full curves show the evolution
without explicitly added noise. All the soliton complexes in this plot
and in the following ones are built up of solitons with the energy
E = 638. Here the staircase-like phase distribution at input was
used.

and its mean angular velocity,

ω(Z) ≡ Lz/I,

I =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(X2 + Y 2)|u|2 dX dY dT ,

(12)

where Lz is the z-component of the angular momentum, see
equation (6), and I is the cluster’s moment of inertia. If the
initial radius R0 of the cluster built as per equation (9) or (10)
is large, it is easy to see that the initial value of the average
radius (11) amounts to R(0) ≈ R0.

Keeping the value of the net topological charge M =
1 fixed, we varied the initial radius R0 around the value
corresponding to the potential minimum as predicted by
figure 2. In this way, the simulations have produced a range of
optimum values of R0 that minimize oscillations of the mean
radius in the course of the propagation (Z -evolution), which
implies that the cluster is a nearly stationary state. For N = 6,
the optimum value is close to R0 = 6, for N = 5 it is about
R0 = 5, whereas for N = 4 we have found R0 ≈ 4.5.
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Figure 4. The break-up of the cluster composed of four solitons
under the action of random noise: (a) Z = 0, (b) Z = 83, (c)
Z = 111, (d) Z = 140. Here M = 1, R0 = 5, and the input
staircase-like phase distribution was used.

Figure 5. The break-up of a cluster composed of five solitons under
the action of random noise: (a) Z = 0, (b) Z = 100, (c) Z = 125,
(d) Z = 150. Here M = 1, R0 = 6, and the initial staircase-like
phase distribution was used.

In figure 3 we display the evolution of the mean radius
R(Z) of the necklace and the corresponding mean angular
velocity ω(Z) in the course of passing several tens diffraction
lengths for clusters composed of N = 4 and 5 solitons. Due to
the fact that in both cases the interaction Hamiltonian exhibits
a global minimum (for M = 1), although it is less pronounced
in the case of N = 4, the evolution is quasiperiodic in the
absence of an explicitly added noise (see the full curves in
figure 3). However, if the noise is injected at input, the cluster
eventually breaks up into fragments, after having passed many
tens of diffractions lengths in a nearly intact form (dashed
curves in figure 3). Typical examples of the noise-induced
break-up for the clusters composed of N = 4 and 5 solitons are
shown in figures 4 and 5, respectively. The remarkable feature
of this eventual instability is that the number of the finally
emerging solitons is determined mainly by the topological
charge M , and not by the initial number of solitons, similar
to what happens in the case of the azimuthal instability of the
corresponding 3D vortex tori [20]. In other words, the final
number of fundamental solitons into which the clusters breaks
up is determined by the angular ‘quantum number’ (index) of
the azimuthal instability with the largest growth rate of the
corresponding vortex torus (soliton). In most cases, the latter
number is twice the original spin of the soliton (see figures 4
and 5, where the clusters break up into two fragments, despite
the fact that they were initially built of four and five solitons,
respectively).

Figures 6 and 7 show the typical evolution of the necklace
pattern composed of N = 6 solitons without the noise added.
The evolution of these clusters is nonstationary: the soliton
complex gradually fuses or expands, simultaneously rotating
during the evolution.

In the special case of M = nN (n = 0, 1, 2, . . .), the
soliton cluster actually carries zero angular momentum, as the
phase shifts between adjacent solitons are a multiple of 2π ;
therefore, in this case the solitons attract each other and the
cluster fuses into a single fundamental (nonspinning) soliton
(see the first row in figure 6 and the first column in figure 7,
corresponding to N = 6 and M = 0). The soliton system
actually has zero angular momentum also for even N and
M = (2n + 1)N/2 (n = 0, 1, 2 . . .). However, in this case
the phase difference between adjacent solitons is tantamount
to π ; hence the interaction between them is repulsive (see
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Z=0 Z=67 Z=85

Z=0 Z=26 Z=46 Z=63

Z=0 Z=14 Z=24 Z=34

Figure 6. Evolution of the soliton clusters (without the noise added)
with N = 6, R0 = 7, and different values of the net vorticity M .
Here the staircase-like phase distribution at input was used.

figure 2). Therefore, the cluster gradually expands in this case
(see the fourth row in figure 6 and the fourth column in figure 7,
corresponding to N = 6 and M = 3).

When N = 6 and M = 2, the cluster has a true
nonzero angular momentum and the propagation shows
gradual expansion and rotation (see figures 6 and 7). When
M = 1 and N = 6, the potential is attractive (see figure 2);
however, the nonzero net angular momentum of the structure
prevents fusion of the solitons. In such cases, the generic
behaviour of the system is its quasiperiodic expansion and
shrinkage, which persists over tens of diffraction lengths, as
is shown in the second row in figure 6 and the second column
in figure 7. This case may be naturally categorized as a truly
robust one.

For N = 6, M = 1, and input radius R0 = 7 (a value
slightly larger than that corresponding to the minimum of
the interaction Hamiltonian in this case; see figure 2), we
compared the long-scale evolution of the clusters perturbed by
the random noise in the cases when the initial phase distribution
had the staircase and ramped shapes; see equations (9) and (10).
Figure 8 shows a comparison of the evolution of the cluster’s
mean radius and angular velocity for these two different types
of input. In both cases, we see pulsating evolution of the soliton
clusters over many diffraction lengths; however, in the case of
the staircase-like shape of the initial phase mask, the soliton
complex eventually breaks up. Examples of the full evolutions
are displayed, for the staircase-like and ramp-like profiles and
identical initial intensity distributions, in figures 9 and 10,
respectively. Thus, the difference between the two types of
initial phase distribution is crucially important: when the initial
phase profile has the staircase-like form, the soliton cluster
is subject to azimuthal instability, the number of emerging
fragments being exactly twice the topological charge (recall
that M = 1 in this case); see figure 9. However, when the
initial phase distribution is a ramp-like one, the soliton complex
shows a clear trend of slow fusion into a quasi-uniform vortex
torus, i.e., a stable 3D spinning soliton, with the same value
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Figure 8. Evolution of the cluster’s mean radius and angular
velocity (the top and bottom rows, respectively) for the cluster
composed of six solitons with the initial radius R0 = 7, random
noise being added at input. In (a) and (c), the initial staircase-like
phase distribution was used, whereas in (b) and (d), it was the
ramp-like distribution.

Figure 9. Evolution of the cluster composed of six solitons in the
presence of input noise: (a) Z = 0, (b) Z = 125, (c) Z = 150,
(d) Z = 180. The net vorticity is M = 1, the initial radius is
R0 = 7, and the staircase-like phase distribution at input was used.

of the vorticity (S = 1) which the original soliton cluster was
lent (see figure 10).

4. Conclusion

In this work, we have investigated the dynamics of soliton
clusters composed of N fundamental solitons in the three-
dimensional model combining the self-focusing cubic and self-

Figure 10. The same as figure 9, but with the continuous ramp-like
phase distribution at input: (a) Z = 0, (b) Z = 117, (c) Z = 201,
(d) Z = 350.

defocusing quintic nonlinearities. The angular momentum
is lent to the initial cluster by means of staircase-like or
continuous ramp-like phase distributions. The possibility of
formation of robust clusters was predicted in a semi-analytical
form, by calculating their effective interaction Hamiltonian.
In the cases when minima of the interaction Hamiltonian were
predicted, direct three-dimensional simulations demonstrate
very long quasi-stable evolution of the rotating clusters,
featuring persistent oscillations. If sufficiently strong random
noise is added to the initial configuration, the cluster eventually
develops an instability, either splitting into several fragments
(which are separating fundamental solitons) or fusing into a
nearly axisymmetric vortex torus. These outcomes accurately
match the stability or instability of the three-dimensional
vortex solitons with the same energy and spin; in particular, in
the case of the break-up, the eventual number of the fragments
is completely different from the number of solitons in the
original cluster, being determined by the dominant mode of
the azimuthal instability of the corresponding vortex soliton.
The initial form of the phase distribution also produces a major
effect: if appreciable noise is added, the cluster built with the
staircase phase profile features azimuthal instability, while the
one with the continuous distribution tends to fuse into a vortex
torus with the same value of the vorticity as the original cluster
was given. Thus, the recently investigated stable and unstable
three-dimensional spinning solitons have their counterparts,
with rich intrinsic dynamics, in the form of rotating clusters.
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