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Vector soliton fission by reflection at nonlinear
interfaces
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We address the reflection of vector solitons, comprising several components that exhibit multiple field oscil-
lations, at the interface between two nonlinear media. We reveal that reflection causes fission of the input
signal into sets of solitons propagating at different angles. We find that the maximum number of solitons
that arises upon fission is given by the number of field oscillations in the highest-order input vector soliton.
© 2007 Optical Society of America
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Spatial vector solitons form when a proper balance
between diffraction, self-, and cross-modulation in all
light components is achieved.1–9 In cubic media, com-
plex vector solitons made of incoherently coupled
fields may be stable provided that the strength of
cross-modulation coupling does not exceed that of
self-modulation. However, strong perturbations
modify their internal structure and can lead to their
fission. In this Letter we address this phenomenon
and reveal that controllable fission does occur by re-
flection of the vector solitons at the nonlinear inter-
faces.

The interaction of radiation with nonlinear inter-
faces gives rise to a number of phenomena, including
hysteresis, bistability, and surface wave
excitation.10–14 Reflection of scalar solitons at nonlin-
ear interfaces has been explored experimentally in
Refs. 15–18. Such reflection can cause fission of
bound soliton states,19 a process that motivates this
study. Reflection becomes especially complex when
several fields are present.20,21 We consider reflection
of solitons comprising components with multiple field
oscillations and find that such a process generates
sets of diverging scalar solitons. The maximum num-
ber of output solitons is given by the number of field
oscillations in the highest-order component and is
not equal to the overall number of components, as
one might expect.

We address the reflection of vector solitons com-
prising N mutually incoherent field components at
the interface of two cubic media with different refrac-
tive indices. The evolution of light beams is described
by the system of N coupled nonlinear Schrödinger
equations for the dimensionless amplitudes qn:
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The transverse � and longitudinal � coordinates are
scaled to the beam width r0 and the diffraction length
Ldif=kr0

2, respectively. The function H���=0 for ��0
and H���=p for ��0 describes a refractive index
jump at �=0. For a beam at wavelength �=1.55 �m
with r0=10 �m propagating in a medium with refrac-

tive index n0=1.5, p=100 corresponds to a refractive
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index step of the order of 10−2; for a nonlinear coeffi-
cient n2�3�10−14 cm2/W, q�1 corresponds to a
field intensity �1010 W/cm2. Such interfaces can be
implemented in nematic liquid crystals,18 or they can
be made by stacking together different materials
with substantially different refractive indices.15

In the absence of an interface, vector soliton solu-
tions of Eq. (1) can be found in the form qn�� ,��
=wn���exp�ibn��. Such solitons contain at least one
nodeless component. Components having equal
propagation constants bk=bn share similar functional
shapes. When bk�bn, vector solitons contain compo-
nents possessing oscillations [see Figs. 1(a) and 1(b)
for profiles of two-component solitons]. At b2→0 the
second component vanishes, while at b2→b1 the soli-
ton transforms into two well-separated vector soli-
tons with two-humped total intensity distribution. In

Fig. 1. Profiles of vector solitons at (a) b1=3, b2=1.2 and
(b) b1=3, b2=2.6. (c) Splitting angle versus incident angle
for the vector soliton depicted in panel (a). (d) Splitting
angle versus b2 for the incident angle �in=0.5 and b1=3. In

(c) and (d) p=100.
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cubic media vector solitons may contain a component
with N oscillations only if all lower-order components
with N−1, N−2, . . . oscillations are present; thus
such solitons include at least N components. The to-
tal number of components may exceed N, but then
some wn have similar shapes.

To study the reflection of multicomponent solitons
at the interface, we solved Eq. (1) with input condi-
tions �qn��=0=wn��+�0�exp�i�in��, where �in is the in-
cident angle, and �0	1 ensures that the soliton is
launched far enough from the interface at �=0. For
small incident angles �in the interface reflects soli-
tons almost completely. With increase of �in the
amount of radiation penetrating into the region �
�0 increases so that one may resolve both reflected
and transmitted beams in the output pattern. For
large enough �in one observes complete soliton refrac-
tion. Such behavior occurs for all values of p, but
larger p values require greater incident angles for
the occurrence of partial and total refraction. Here
we are primarily interested in the regime of complete
reflection yielding effective vector soliton fission, and
we set p=100.

The typical dynamics encountered with two-
component soliton reflection is shown in Fig. 2. While
the fundamental mode keeps its profile and ampli-
tude almost unchanged after reflection, thereby ex-
hibiting quasiparticle behavior, the dipole mode expe-
riences large shape transformations upon reflection.
Because of the spatial separation between maxima of
the w2 component, they arrive at the interface at
slightly different distances �. The right pole of the w2
component collides with the interface and bounces
back in the vicinity of the point �=0, while the sec-
ond (left) pole changes its propagation direction in
the vicinity of the location where it meets the re-

Fig. 2. (Color online) Splitting of two-component vector
soliton with b1=3, b2=1.2 into two scalar solitons at �in
=1 and p=100. Intensities of (a) first and (b) second com-

ponents; (c) total intensity.
flected right pole and w1 component. Therefore the
left pole of the w2 component is reflected back at a
distance from the interface, in contrast to the w1
component. This difference in reflection positions
leads to different effective potentials experienced by
the corresponding fields and yields different reflec-
tion angles [Fig. 2(c)]. Notice that upon reflection the
energy concentrated in the right hump of the w2 com-
ponent couples partially into its left hump, radiative
field, and w1 component, so that the w2 component
loses its dipolelike input structure and reshapes into
a single-hump soliton. Thus collision with the inter-
face results in fast fission of input solitons into a set
of diverging solitons that are scalar for the chosen set
of parameters.

The angle 
� between two scalar solitons emerging
upon reflection versus the incident angle is shown in
Fig. 1(c). For the set of parameters in Fig. 1(c) the ef-
fective fission of vector soliton occurs at �in�1.2,
since for larger values of �in refraction dominates.
Note that refraction of vector solitons at large inci-
dent angles typically does not result in their fission;
i.e., rather, vector solitons keep their internal struc-
ture after their pass though the interface. At very
small angles, �in�0.01, the collision is too weak and
also does not lead to vector soliton fission. Surpris-
ingly, we found that in the interval �in� �0.01,1.2	
the dependence 
���in� is nonmonotonic. The angle

� reaches its minimal value at �in
0.05 but never
vanishes. At �in�0.05 the splitting angle increases
monotonically. Notice that 
� is a nonmonotonic func-
tion of b2 as well. The splitting angle vanishes at b2
→0, when the w2 component goes to zero and may
not affect the soliton dynamics, while at b2→b1, vec-
tor solitons transform into two separated and almost
independent beams, each of them being reflected at
almost equal angles. Thus the most effective fission
occurs for intermediate values of b2.

We have found similar fission scenarios for higher-
order vector solitons containing more than two input
components. Fission of the three-component soliton
of Fig. 3(a) whose higher-order component possesses
three oscillations is depicted in Fig. 3(c). This soliton
breaks into three scalar fragments, with the most in-
tensive fragment (in the w1 component) flying apart
at the smallest angle and the less intense fragment
(in the w3 component) flying apart at the largest
angle with respect to the � axis. Interestingly, one
finds that the intensity redistribution inside each
component is similar to that for the soliton of Fig. 2:
upon reflection, energy concentrated within each
component couples into its left outermost hump,
which then gives rise to a scalar soliton, while the
minimal distance between this hump and the inter-
face increases with the order of the component.

A central result of this Letter is that the number of
spatially separated solitons that may emerge upon
fission of the vector complexes is determined by the
number of oscillations in the highest-order compo-
nent, and it does not depend on the overall number of
components. This point is illustrated in Figs. 3(b) and
3(d), where we show the profile and splitting of a
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three-component soliton for which w1 and w2 feature
similar shapes. One finds that components possess-
ing similar shapes are always reflected with similar
angles irrespective of the energy concentrated within
each component. Hence, e.g., in Fig. 3(d) fission of the
input vector soliton gives rise to one two-component

Fig. 4. (Color online) Splitting of a two-component vector
soliton with a three-humped second component correspond-
ing to b1=1.06, b2=0.66, at �in=0.5 and p=100 in a satu-
rable medium with S=0.8. (a) First component, (b) second
component, (c) total intensity.

Fig. 3. (Color online) Profiles of three-component vector
solitons at (a) b1=2.89, b2=1.66, b3=0.86 and (b) b1=3.4,
b2=3.4, b3=0.64. Splitting of solitons from panels (a) and
(b) is depicted in panels (c) and (d), correspondingly. In both
cases �in=0.5 and p=100. In (c) and (d) the total intensity
distribution is shown.
vector and one scalar soliton. We checked the validity
of this rule by conducting extensive numerical simu-
lations of fission of solitons with as many as 10 com-
ponents, having different symmetries.

Notice that the results presented here were ob-
tained for the interface of Kerr media and that inter-
faces between saturable media exhibit different phe-
nomena. Saturable materials support solitons
composed of a single nodeless component and compo-
nents featuring multiple field oscillations, provided
that the saturation degree exceeds a critical value.7,9

Our numerical simulations showed that reflection of
such solitons gives rise to several solitons with differ-
ent internal structures. For example, reflection of
soliton having a nodeless first and a three-humped
second component results in the appearance of a sca-
lar soliton and a vector soliton composed of nodeless
and dipole components (Fig. 4). The difference from
the Kerr case is clearly apparent.
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