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Resonant Mode Oscillations in Modulated Waveguiding Structures
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We put forward the concept of resonant, Rabi-like oscillatons and adiabatic transitions between
confined light modes in properly modulated multimode waveguides. The phenomenon is shown to take
place in both the linear and the nonlinear regimes. In addition, we find that the mode transitions occur not
only in simple geometries, but also in complex confining multimode structures. The phenomenon is
analogous to the familiar stimulated state transitions that occur in multilevel quantum systems.
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More than 70 years ago, 1. Rabi published his seminal
paper about two-level quantum system resonantly inter-
acting with an electromagnetic wave [1]. The phenomenon
is universal and occurs in a variety of physical settings:
Atomic energy levels, the valence and conduction bands in
semiconductors, spin orientations in a magnetic field, etc.,
Rabi found that when the electromagnetic wave is turned
on, the population of the higher energy levels grows. Once
the stimulated transition is complete, the electromagnetic
wave stimulates the emission of radiation so that the sys-
tem returns to its ground state. This revival process is peri-
odic, and its frequency (Rabi oscillation frequency) in-
creases with amplitude of the electromagnetic wave.
Since Rabi’s seminal paper, there has been huge progress
in studies of quantum revivals in atomic and molecular sys-
tems, as well as of related revival phenomena in condensed
matter and optical systems (for a recent review, see [2]).

In classical Optics, revivals appear also, e.g., as periodi-
cal self-imaging or Talbot effects. This effect has been
observed in a variety of physical systems (see [3—6] for a
few examples). Introducing longitudinal modulations in
optical structures can lead to similar phenomena. Thus,
the self-imaging effect for light beams in periodically
curved waveguide arrays was observed in AlGaAs wave-
guides [7—11]. Adiabatic transfer of light in curved wave-
guide arrays akin to multilevel population transfer of atoms
driven by a pulse sequence was discussed in Ref. [12].
Longitudinal modulation of transversally periodic guiding
structures allows managing their diffraction properties
[13,14] and may even make possible diffractionless propa-
gation of linear beams [15,16]. In the nonlinear regime, the
longitudinal modulation of periodic structures gives rise to
a variety of parametric phenomena [17,18]. Longitudinal
modulations of linear waveguides may stimulate revivals,
i.e., periodic transitions between guided modes. The sim-
plest theory of mode transitions in periodically perturbed
linear waveguides, leading to a system of coupled differ-
ential equations for the mode amplitudes, is well-known
today (see, e.g., [19]). Such linear mode conversion can be
implemented in photoinduced, long-periodic fiber gratings
[20]. However, stimulated mode transitions have not been
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analyzed for full models that take into account leaking
radiation and nonlinearity. Moreover, stimulated mode
transitions have been only considered in settings where
waveguiding is caused by total internal reflection but not
due to more complicated mechanisms, such as, e.g.,
grating-mediated waveguiding.

In this Letter, we predict that Rabi-like oscillations and
stimulated mode transitions occur with linear and soliton
states in properly modulated waveguides. We address a
model that takes into account radiation and an exact wave-
guiding mechanism, as well as the solitonic regimes. We
start our analysis with linear waveguiding structures and
show that suitable longitudinal modulations induce peri-
odic transitions between guided modes of the same parity
for general guiding mechanisms. We reveal the possibility
of cascade stimulated transitions in systems supporting up
to three modes of the same parity. We show that the
phenomenon occurs also in the nonlinear regime and in
multimode systems, where the mode oscillation might be
viewed as analogous to interband transitions.

For the sake of generality, we consider the propagation
of a laser beam along the ¢ axis in a medium with an
instantaneous cubic nonlinearity and transverse shallow
modulation of refractive index described by the nonlinear
Schrodinger equation for dimensionless field amplitude g:

1 9%g 2
Y- 5 7 — pR(n)[1 + ,U«COS(ng)]q — olql*q.
(D

Here, the longitudinal ¢ and transverse 7 coordinates
are scaled to the diffraction length and input beam width,
respectively; the function R(7) describes the transverse
profile of the refractive index; the parameter p is propor-
tional to the depth of the refractive index modulation; the
depth of longitudinal periodic modulation with the spatial
frequency (), is characterized by the parameter u < 1;
and, finally, the parameter o = 0 corresponds to the linear
regime while o = 1 corresponds to focusing nonlinearity.
Technological fabrication of longitudinally-modulated re-
fractive index landscapes is well established [9,10], while
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optical induction in suitable crystals offers a potential
powerful alternative [21].

We start our analysis from the simplest case of a wave-
guide with Gaussian transverse refractive index profile
R(n) = exp[—(n/W)?]. Such waveguide supports only
three linear modes at p = 2.3 and W = 2. The stationary
mode profiles w, (1) and corresponding propagation con-
stants b, at u = 0 are found numerically from the linear
eigenvalue problem bw = (1/2)d*w/dn? + R(n)w that is
obtained from Eq. (1) upon substitution g(7n, &) = w(n) X
exp(ib&). For illustrative purposes, we depict in Fig. 1(a)
the refractive index profile as a potential well, while the
profiles of the symmetric modes are depicted as eigenfunc-
tions of the corresponding energy levels. We now set the
mode w5(n) as the initial condition for the linear version of
Eq. (1) in the presence of a longitudinal modulation of the
refractive index (u # 0).

On physical grounds, one of the central findings of this
Letter is that the application of a suitable shallow longitu-
dinal refractive index modulation with the frequency (), =
by — b; (here b 5 are the propagation constants of eigen-
modes with the same symmetry) stimulates the mode
conversion w3(n) — wy(n), in a manner similar to that
in Rabi oscillation between quantum atomic states. This
process is reversible, so that the initial eigenmode is re-
covered after a certain propagation distance, but recovery
is not complete because of the small radiation visible in
Fig. 1(b). Figures 1(c) and 1(d) illustrate the oscillatory
behavior of the field amplitude |g(0, £)| in the waveguide
center. For shallow longitudinal modulations (u < 1),
the oscillations of |g(0, £)| correspond to the superposition
of two eigenmodes ¢(n, &) = C(&)w;(n)exp(ib, &) +
C3(&)ws(m) exp(iby &), where Cy3(€) are complex weight
coefficients [thus for the transition ws(7) — w(7) one has
C;(0) =1 and C;(0) = 0]. The standard technique of
analysis of resonant ({2 = b; — b3) mode coupling (see
Ref. [22]) yields the system of equations

. dC 1
1<W1W1>d7§1 = 5p,u<w1Rw3>C3,

dC 1 2)
i<W3W3>d—; = 5PM<W3RW1>C1y

where angular brackets stand for spatial averaging, i.e.,
(WiRws3) = [*, wi(n)R(n)ws(n)dn. Notice that energy
exchange is possible only between modes with equal par-
ity. Otherwise, the overlap integral (w;Rw;) vanishes for
symmetric refractive index distribution R(7). Equa-
tions (2) can be used to derive the oscillation frequency
Qg = (up/2(w Rw3)/(wiw)/2(wsw)! /2. This  fre-
quency is proportional to the depth of the longitudinal
modulation. Stimulated conversion of modes with equal
parities is also possible in systems with periodic variation
of waveguide width, but in this setting, the radiative losses
become more pronounced. Notice that stimulated transi-
tions between eigenmodes with different parity may be
possible in periodically curved structures, such as those
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FIG. 1 (color online). (a) Linear modes of three-mode

Gaussian waveguide. Black line shows potential well, while
each mode profile is shifted in vertical direction to show the
position of corresponding energy levels inside the well. Arrows
show transition directions. (b) Revival dynamics at €}, =
0.95(b; — b3), m = 0.15, for input mode w;(n). Amplitude g,
versus ¢ for resonant transitions ws(m) — wi(n) (c) and
wi(n) = ws(n) (d) at Qp = by — b3, u = 0.15. (e) Contrast
versus v for transition wz(n) — w;(n) at w = 0.15. (f) Distance
of mode conversion w3(n) — w;(7) versus u at O = by — bs.
In all cases, W = 2, p = 2.3.

studied in Refs. [8—11], or in waveguides with tilted grat-
ings [20]. Still, in such settings, the radiative losses ac-
companying stimulated transitions are also essential.

The conversion is most pronounced and radiative losses
are minimal at resonance {); = by, — b;. When the longi-
tudinal modulation frequency is slightly detuned from the
resonance, the mode conversion is incomplete (the weight
coefficient decreases, but it does not vanish at £ = £,;) and
some residual oscillations of the central point amplitude ¢,
remain in the vicinity of &, [Fig. 1(c)]. The contrast of the
residual oscillations V = (g™ — g™in) /(g™ + g™") may
be used to quantify the quality of the stimulated mode
conversion. Figure 1(e) shows the dependence of the con-
trast on the relative frequency detuning » from resonant
value (in percents). As expected on physical grounds, the
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high-quality mode conversion is possible only in a very
narrow band of longitudinal modulation frequencies,
which implies that highly selective conversion is possible
in the presence of multiple eigenmodes. Figure 1(f) shows
the dependence of the transition distance &, on the longi-
tudinal modulation depth w; the decay of the transition
distance &, = 7/Qy with u is consistent with the above
analytical expression {1z ~ w. Notice that in the transition
point, the mode profile corresponding to b5 exactly trans-
forms into the profile corresponding to b; depicted in
Fig. 1(a).

Highly selective stimulated transformation are illus-
trated in Fig. 2 where we consider a five-mode Gaussian
waveguide at W = 2, p = 6. The fifth symmetric mode
ws(n) [Fig. 2(a)] is launched into a waveguide with a
modulation with ), = b5 — b3 leading to stimulated con-

version ws(n) — ws(n) at the distance irl) =~ 32
[Fig. 2(b)]. Beyond this point, the frequency of longitudi-
nal modulation was set to {); = b; — b in order to stimu-
late transition to the fundamental mode ws(1) — w(7)

that occurs at ffrz) =~ 87. Longitudinal modulation was then
suppressed (u — 0) beyond this point to avoid reverse
conversion. Low-contrast residual oscillations of the am-
plitude in the center of the waveguide for & > ffrz) confirm
high-quality cascaded conversion. The corresponding dy-
namics is shown in Fig. 2(c). As it was mentioned, in the

transition points, the mode profiles match those depicted in
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FIG. 2 (color online). (a) Linear modes of five-mode Gaussian
waveguide. (b) Amplitude ¢. versus & for cascade conversion
ws — w3 — w; at w = 0.1. Dashed lines indicate distances
where modulation frequency changes from (), = b; — bs to
Qg =b —b; and where modulation is switched off.
(c) Dynamics of transition ws — w3 — w; corresponding to
(b). In all cases, W =2, p = 6.

Fig. 2(a). Note that direct conversion ws(77) — w;(n) can
also be realized at the modulation frequency ), = bs —
by, but one finds that the process is accompanied by sig-
nificantly higher radiative losses.

Another important finding is the persistence of the
stimulated mode conversion in the nonlinear regime.
With nonlinearity, the propagation constants, as well as
the corresponding mode profiles, become functions of the
energy flow U = [® |q|>dn. Figure 3(a) illustrates the
shift of the propagation constants as well as change of the
transition frequency b;(U) — b;(U) with increase of the
energy flow U of the modes supported by the nonlinear
three-mode Gaussian waveguide (o =1, W =2, p=
2.3). This dispersion diagram was calculated by a relaxa-
tion method for the eigenvalue problem bw =
(1/2)d*>w/dn? + R(n)w + ow® with o # 0 obtained
from Eq. (1) at w = 0. The third mode was then selected
as initial condition for Eq. (1) with w > 0. By tuning the
frequency of the longitudinal refractive index modulation,
it is possible to perform high-quality conversion of non-
linear modes, even for non-negligible values of the energy
flow U = 3. Figures 3(b) and 3(c) show dynamics of such
high-quality stimulated nonlinear mode conversion
wsz(n) — wi(n) at U = 1. The initial and final guided
nonlinear states are depicted by circles at dispersion dia-
gram 3(a) for different values of input energy flow, while
arrows show the conversion. Increasing U results in higher
radiative losses. Interestingly, the frequency corresponding
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FIG. 3 (color online). (a) Dispersion diagrams for first and
third modes of nonlinear Gaussian waveguide. Arrows show
resonant nonlinear transitions w; — w; at u = 0.15, where
initial and final states are marked by circles. (b) Amplitude g,
versus & for resonant transition at U =1, Q, = 1.603, u =
0.15. Dashed line indicates the distance where modulation is
switched off. (¢) Dynamics of transition w3 — w, corresponding
to (b). In all cases, W =2, p = 2.3.
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FIG. 4 (color online). (a) Linear modes of three-mode grating
waveguide at () = 4, W = 7, p = 2. (b) Dynamics of nonlinear
transition w3 — w; in such waveguide at U =1, u = 0.15,
Q, = 0.662. Longitudinal modulation is switched off at ¢ =
& = 122.8. (c) Band structure of propagation constants in
super-Gaussian modulated waveguide with () =4, W = 8,
p = 10 (tightly packed discrete eigenvalues, assembled into
bands, are not resolved). (d) Dynamics of transition between
the bottom of ‘“‘conductivity band” and the top of ‘““valence
band” at U =1, u = 0.15, , = 4.92.

to the most efficient conversion increases with U too, and it
is still approximately given by the value b3(U) — b,(U).

The possibility of stimulated conversion of guided non-
linear states is not sensitive to the waveguiding mecha-
nism. Next, we show an illustrative example related to
grating-mediated guiding [23]. In this case, the refractive
index profile corresponds to a periodic grating with spa-
tial frequency (2, and bell-shaped amplitude modulation,
e.g., the Gaussian one: R(n) = (1/2)[1 + cos(2,7)] X
exp[—(n/W)?]. The corresponding refractive index pro-
file (depicted as the potential well) and nonlinear modes
with U = 1 are shown in Fig. 4(a). One can clearly see that
such waveguides also allow high-quality stimulated tran-
sitions as well as their simplest Gaussian counterparts
despite a different type of mechanism supporting localized
modes [Fig. 4(b)].

We also considered the nonlinear analog of interband
Rabi oscillations that can be experimentally realized in
finite waveguide arrays. The refractive index profile
matches an harmonic lattice with the amplitude modulated
by the wide super-Gaussian function R(7n) = (1/2) X
[1 + cos(Q,m)]exp[—(n/W)*]. Such a wide waveguide
with Q,, = 4, p = 10, W = 87 supports 44 guided modes
whose propagation constants b; form analogs of ‘““va-
lence” and ‘“‘conducting” bands separated by the gap

(discrete eigenvalues forming those bands are tightly
packed and are not resolved in Fig. 4(c) showing eigen-
value spectrum). Figure 4(d) illustrates stimulated conver-
sion of the nonlinear mode from the bottom of *“‘conducting
band” into nonlinear mode from the top of the ‘““valence
band” in such highly-multimode system (the transition is
shown by an arrow in Fig. 4(c) at U = 1).

Summarizing, we introduced an analog of Rabi oscilla-
tions and stimulated transitions in multimode guiding
structures. The analogy is found to take place with low-
power modes and also in the presence of weak nonlineari-
ties. Our results motivate new opportunities to efficient
state conversion in suitable guiding structures in several
physical settings and geometries. We also note that results
may be extended to system exhibiting strong longitudinal
modulations, by using finite-difference frequency-domain
methods.
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